STA 235H - Multiple Regression: Binary Outcomes

Fall 2023

McCombs School of Business, UT Austin

Binary Outcomes

- You have probably used binary outcomes in regressions, but do you know the issues that they may bring to the table?

What can we do about them?

How to handle binary outcomes?

Linear Probability Model

Logistic Regression

Linear Probability Models

- A Linear Probability Model is just a traditional regression with a binary outcome
- Something interesting about a binary outcome is that the expected value of Y if Y is binary is actually a probability!

$$
\begin{gathered}
E\left[Y \mid X_{1}, \ldots, X_{P}\right]=\operatorname{Pr}\left(Y=0 \mid X_{1}, \ldots, X_{p}\right) \cdot 0+\operatorname{Pr}\left(Y=1 \mid X_{1}, \ldots, X_{p}\right) \cdot 1 \\
=\operatorname{Pr}\left(Y=1 \mid X_{1}, \ldots, X_{p}\right)
\end{gathered}
$$

How to interpret a LPM?

- $\hat{\beta}$'s interpreted as change in probability
- Example:

$$
\text { Grade } A=\beta_{0}+\beta_{1} \cdot \operatorname{Study}+\varepsilon
$$

- $\hat{\beta}_{1}$ is the average change in probability of getting an A if I study one more hour.
- Studying one more hour is associated with an average increase in the probability of getting an A of $\hat{\beta}_{1} \times 100$ percentage points.

$$
\widehat{G r a d e} A=0.2+0.125 \cdot \text { Study }
$$

- Studying one more hour is associated with an average increase in the probability of getting an A of 12.5 percentage points.

Side note: Difference between percent change and change in percentage points

- Imagine that if you study 4 hrs your probability of getting an A is, on average, 70% and if you study for 5hrs that probability increases to 75%.
- Then, we can say that your probability increased by 5 percentage points.
- Why is this not the same as saying that your probability increased by 5% ?
- Remember percent change?

$$
\frac{y_{1}-y_{0}}{y_{0}}=\frac{75-70}{70}=0.0714
$$

- This means that, in this case, a 5 percentage point increase is equivalent to a 7% increase in probability.

> Be aware of the difference in percentage points and percent!

Let's look at an example

- Home Mortgage Disclosure Act Data (HMDA)

hmda = read.csv("https://raw.githubusercontent.com/maibennett/sta235/main/exampleSite/content/Classes/Week3/2_OLS_Issues/c head(hmda)

\#\#		deny	pirat hirat	lvrat	chist	mhist	phist	unemp	selfemp	insurance	condomin
\#\#	1	no	0.2210 .221	0.8000000	5	2	no	3.9	no	no	no
\#\#	2	no	0.2650 .265	0.9218750	2	2	no	3.2	no	no	no
\#\#	3	no	0.3720 .248	0.9203980	1	2	no	3.2	no	no	no
\#\#	4	no	0.3200 .250	0.8604651	1	2	no	4.3	no	no	no
\#\#	5	no	0.3600 .350	0.6000000	1	1	no	3.2	no	no	no
\#\#	6	no	0.2400 .170	0.5105263	1	1	no	3.9	no	no	no
\#\#		afam	single hschoo	ool							
\#\#	1	no	no	yes							
\#\#	2	no	yes	yes							
\#\#	3	no	no	yes							
\#\#	4	no	no	yes							
\#\#	5	no	no	yes							
\#\#	6	no	no	yes							

Probability of someone getting a mortgage loan denied?

- Getting mortgage denied (1) based on race, conditional on payments to income ratio (pirat)

```
hmda = hmda %>% mutate(deny = as.numeric(deny) - 1)
summary(lm(deny ~ pirat + afam, data = hmda))
##
## Call:
## lm(formula = deny ~ pirat + afam, data = hmda)
##
## Residuals:
\#\# Min 1Q Median 3Q Max
## -0.62526 -0.11772 -0.09293-0.05488 1.06815
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.09051 0.02079 -4.354 1.39e-05 ***
\#\# pirat \(0.559190 .05987 \quad 9.340<2 \mathrm{e}-16\) ***
## afamyes 0.17743 0.01837 9.659 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3123 on 2377 degrees of freedom
## Multiple R-squared: 0.076, Adjusted R-squared: 0.07523
## F-statistic: 97.76 on 2 and 2377 DF, p-value: < 2.2e-16
```

- Holding payment-to-income ratio constant, an AA client has a probability of getting their loan denied that is 18 pp higher, on average, than a non AA client.
- Being AA is associated to an average increase of 0.177 in the probability of getting a loan denied compared to a non $A A$, holding payment-to-income ratio constant.

How does this LPM look?

Issues with a LPM?

- Main problems:
- Non-normality of the error term
- Heteroskedasticity (i.e. variance of the error term is not constant)
- Predictions can be outside $[0,1]$
- LPM imposes linearity assumption

Issues with a LPM?

- Main problems:
- Non-normality of the error term \rightarrow Hypothesis testing
- Heteroskedasticity \rightarrow Validity of SE
- Predictions can be outside $[0,1] \rightarrow$ Issues for prediction
- LPM imposes linearity assumption \rightarrow Too strict?

Are there solutions?

Some solutions we will take into account:

- Don't use small samples: With the CLT, nonnormality shouldn't matter much.
- Use robust standard errors: Package estimatr in R is great!

Run again with robust standard errors

```
library(estimatr)
model1 <- lm(deny ~ pirat + afam, data = hmda)
model2 <- lm_robust(deny ~ pirat + afam, data = hmda)
\begin{tabular}{|l|c|c|}
\hline & \((1)\) & (2) \\
\hline (Intercept) & \(-0.091 * * *\) & \(-0.091 * *\) \\
\hline pirat & \((0.021)\) & \((0.031)\) \\
\hline & \(0.559 * * *\) & \(0.559 * * *\) \\
\hline afamyes & \((0.060)\) & \((0.095)\) \\
\hline & \(0.177 * * *\) & \(0.177 * * *\) \\
\hline\(+p<0.1, * p<0.05, * * p<0.01, * * * p<0.001\) \\
\hline
\end{tabular}
```

- Can you interpret these parameters? Do they make sense?

Most issues are solvable, but...

What about prediction?

Logistic Regression

- Typically used in the context of binary outcomes (Probit is another popular one)
- Nonlinear function to model the conditional probability function of a binary outcome.

$$
\operatorname{Pr}\left(Y=1 \mid X_{1}, \ldots, X_{p}\right)=F\left(\beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}\right)
$$

Where in a logistic regression: $F(x)=\frac{1}{1+\exp (-x)}$

- In the LPM, $F(x)=x$
- A logistic regression doesn't look pretty:

$$
\operatorname{Pr}\left(Y=1 \mid X_{1}, \ldots, X_{p}\right)=\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}\right)}}
$$

A regression with $\log (\mathrm{Y})$ is NOT a logistic regression!

How does this look in a plot?

When will we use logistic regression?

- As you discovered in the readings, logit is great for prediction (much better than LPM).
- For explanation, however, LPM simplifies interpretation.

Use LPM for explanation and logit for prediction

(but remember robust SE!)

Takeaway points

- Always make sure to check your data:
- What are analyzing? Does the data behave as I would expect? Should I exclude observations?
- For LPM, always include robust standard errors!

