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Announcements

Midterm is next week

Please be on time!
Make sure HonorLock works without problems.
Check the course website for recommendations.

Answer key for Homework 3 is posted on the course website.

Review session for the midterm on Friday 2.00pm at UTC 3.102

Check out the answers for the JITTs on the course website:

Even if you got full credit, check the feedback and the correct answer.



Natural Experiments

RCTs in the wild.

Always check for balance!

Difference-in-Differences (DD):

How we can use two wrong estimates to get
a right one.

Assumptions behind DD.

Last class



Regression Discontinuity Design (RDD):

How can we use discontinuities to recover
causal effects?

Assumptions behind RD designs.

Structure for this class:

Start: Material + Examples

Finish: Exercise

Today



Mind the gap



Another identi�cation strategy

RCTs

Selection on observables

Natural experiments

Di�erence-in-Di�erences

Regression Discontinuity Designs



Tell me something about the readings/videos you had to watch for
this week



Introduction to Regression Discontinuity Designs

Regression Discontinuity (RD) Designs

Arbitrary rules determine treatment assignment

E.g.: If you are above a threshold, you are assigned to treatment, and if your below, you are not (or vice versa)



Geographic discontinuities



Time discontinuities



Voting discontinuities



You can �nd discontinuities
everywhere!



Key Terms

Running/ forcing variable

Index or measure that determines eligibility

Cuto�/ cutpoint/ threshold

Number that formally assigns you to a program or treatment



Let's look at an example



Hypothetical tutoring program

Students take an entrance exam

Those who score 70 or lower
get a free tutor for the year

Students then take an exit exam
at the end of the year



Can we compare students who got
a tutor vs those that did not to
capture the e�ect of having a

tutor on their exit exam?



Assignment based on entrance score



Let's look at the area close to the cuto�



Let's get closer



Causal inference intuition

Observations right before and after the threshold are
essentially the same

Pseudo treatment and control groups!

Compare outcomes right at the cuto�



Exit exam results according to running variable



Fit a regression at the right and left side of the cuto�



Fit a regression at the right and left side of the cuto�



What population within my
sample am I comparing?



My estimand is the
Local Average Treatment E�ect

(LATE) for units at R=c



Is that what we want?

Probably not ideal, there may not be any units with R=c

... but better LATE than nothing!



Conditions required for identi�cation

Threshold rule exists and cutoff point is known

There needs to be a discontinuity in treatment assignment, and we need to know where it happens!

The running variable Ri is continuous near c.

If we are working with a coarse variable, this might not work.

Key assumption:

Continuity of E[Y(1)|R] and E[Y(0)|R] at R=c

That's the math-y way to say that the only thing that changes right at the cuto� is the treatment assignment!



Estimation in practice



We need to identify that "jump"



How do we actually estimate an RDD?

The simplest way to do this is to fit a regression using an interaction of the treatment variable and the
running variable:

Y = β0 + β1(R − c) + β2I[R > c] + β3(R − c)I[R > c] + ε



How do we actually estimate an RDD?

The simplest way to do this is to fit a regression using an interaction of the treatment variable and the
running variable:

Y = β0 + β1 (R − c)
⏟

Distance to the cutoff

+ β2I[R > c]
⏟

Treatment

+ β3

Distance to the cutoff
⏞

(R − c) I[R > c]
⏟

Treatment

+ ε

We can simplify this with new notation:

Yi = β0 + β1R
′ + β2Treat + β3R

′ × Treat

where Treat is a binary treatment variable and R ′  is the running variable centered around the cutoff

Can you identify these parameters in a plot?



Let's identify coe�cients



Steps for analyzing an RDD

1) Check that there is a discontinuity in treatment assignment at the cutoff.

2) Check that covariates change smoothly across the threshold.

You can think about this as the equivalent of a balance table.

3) Run the regression discontinuity design model.

Interpret this effect for individuals right at the cutoff.



Let's see an example



You are managing a retail store and notice that
sales are low in the mornings, so you want to
improve those numbers.

You decide to give the first 1,000 customers
that show up 10% off

Discount and sales



Discounts and sales: Data available

We have the following dataset, with time of arrival for customers, a few covariates, and the outcome of
interest (sales)

sales = read.csv("https://raw.githubusercontent.com/maibennett/sta235/main/exampleSite/content/Class

head(sales)

##   id     time age female   income    sales treat
## 1  1 1.050000  49      1 83622.63 231.0863     1
## 2  2 1.203883  50      1 67265.61 215.6148     1
## 3  3 1.332719  46      1 59151.46 200.5003     1
## 4  4 1.608881  49      0 67308.17 203.9145     1
## 5  5 1.637072  50      1 65420.20 217.6668     1
## 6  6 1.871347  47      0 68566.67 222.0601     1



Discounts and sales: Can we use an RDD?

In RDD, we need to check that there are no unbalances in covariates across the threshold.

sales = sales %>% mutate(dist = c-time)

lm(income ~ dist*treat, data = sales)



RDD on sales using linear models

lm(sales ~ dist*treat, data = sales)



RDD on sales using linear models

On average, providing a 10% discount increases sales by $31.3 for the 1,000 customer, compared to not having a discount

summary(lm(sales ~ dist*treat, data = sales))

## 
## Call:
## lm(formula = sales ~ dist * treat, data = sales)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -65.738 -13.940   0.051  13.538  76.515 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 178.640954   1.300314  137.38   <2e-16 ***
## dist          0.205355   0.008882   23.12   <2e-16 ***
## treat        31.333952   1.842338   17.01   <2e-16 ***
## dist:treat   -0.200845   0.012438  -16.15   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20.52 on 1996 degrees of freedom
## Multiple R-squared:  0.6939,    Adjusted R-squared:  0.6934 
## F-statistic:  1508 on 3 and 1996 DF,  p-value: < 2.2e-16



We can be more �exible

The previous example just included linear terms, but you can also be more flexible:

Y = β0 + β1f(R
′ ) + β2Treat + β3f(R

′ ) × Treat + ε

Where f is any function you want.



What happens if we �t a quadratic model?

lm(sales ~ dist*treat + treat*I(dist^2), data = sales)



What happens if we �t a quadratic model?

On average, providing a 10% discount increases sales by $33.1 for the 1,000 customer, compared to not having a discount

summary(lm(sales ~ dist*treat + treat*I(dist^2), data = sales))

## 
## Call:
## lm(formula = sales ~ dist * treat + treat * I(dist^2), data = sales)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -66.090 -13.979   0.239  13.154  76.656 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      1.698e+02  1.937e+00  87.665  < 2e-16 ***
## dist            -4.302e-03  3.556e-02  -0.121 0.903725    
## treat            3.308e+01  2.747e+00  12.041  < 2e-16 ***
## I(dist^2)       -8.288e-04  1.363e-04  -6.083 1.41e-09 ***
## dist:treat       1.713e-01  4.964e-02   3.452 0.000569 ***
## treat:I(dist^2)  2.034e-04  1.877e-04   1.084 0.278554    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20.23 on 1994 degrees of freedom
## Multiple R-squared:  0.7029,    Adjusted R-squared:  0.7021 
## F-statistic: 943.5 on 5 and 1994 DF,  p-value: < 2.2e-16



What happens if we only look at observations close to c?

sales_close = sales %>% filter(dist>-100 & dist<100)

lm(sales ~ dist*treat, data = sales_close)



How do they compare?

On average, providing a 10% discount increases sales by $32.2 for the 1,000 customer, compared to not having a discount

summary(lm(sales ~ dist*treat, data = sales_close))

## 
## Call:
## lm(formula = sales ~ dist * treat, data = sales_close)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -53.241 -14.764   0.268  12.938  57.811 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 170.84457    2.05528  83.125   <2e-16 ***
## dist          0.06345    0.03542   1.791   0.0736 .  
## treat        32.21243    2.93614  10.971   <2e-16 ***
## dist:treat    0.06909    0.05047   1.369   0.1714    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20.25 on 782 degrees of freedom
## Multiple R-squared:  0.5261,    Adjusted R-squared:  0.5243 
## F-statistic: 289.4 on 3 and 782 DF,  p-value: < 2.2e-16



Potential problems

There are many potential problems with the previous examples:

Which polynomial function should we choose? Linear, quadratic, other?

What bandwidth should we choose? Whole sample? [-100,100]?

There are some ways to address these concerns.



Package rdrobust
Robust Regression Discontinuity introduced by Cattaneo, Calonico, Farrell & Titiunik (2014).

Use of local polynomial for fit.

Data-driven optimal bandwidth (bias vs variance).

rdrobust: Estimation of LATE and opt. bandwidth

rdplot: Plotting RD with nonparametric local polynomial.



Let's compare with previous parametric results

rdplot(y = sales$sales, x = sales$dist, c = 0, 
       title = "RD plot", x.label = "Time to 1,000 customer (min)", y.label = "Sales ($)")



Let's compare with previous parametric results

rdplot(y = sales$sales, x = sales$dist, c = 0, 
       title = "RD plot", x.label = "Time to 1,000 customer (min)", y.label = "Sales ($)")



Let's compare with previous parametric results

rd_sales = rdrobust(y = sales$sales, x = sales$dist, c = 0)
summary(rd_sales)

## Sharp RD estimates using local polynomial regression.
## 
## Number of Obs.                 2000
## BW type                       mserd
## Kernel                   Triangular
## VCE method                       NN
## 
## Number of Obs.                 1000         1000
## Eff. Number of Obs.             209          200
## Order est. (p)                    1            1
## Order bias  (q)                   2            2
## BW est. (h)                  53.578       53.578
## BW bias (b)                  87.522       87.522
## rho (h/b)                     0.612        0.612
## Unique Obs.                    1000         1000
## 
## =============================================================================
##         Method     Coef. Std. Err.         z     P>|z|      [ 95% C.I. ]       
## =============================================================================
##   Conventional    37.772     4.370     8.644     0.000    [29.208 , 46.336]    
##         Robust         -         -     7.684     0.000    [29.124 , 49.070]    
## =============================================================================



Your turn!



RD designs are great for causal inference!

Strong internal validity
Number of robustness checks

Limited external validity.

Make sure to check your data:

Discontinuity in treatment assignment
Smoothness of covariates

Takeaway points



References

Angrist, J. and S. Pischke. (2015). "Mastering Metrics". Chapter 4.

Social Science Research Institute at Duke University. (2015). “Regression Discontinuity: Looking at People
on the Edge: Causal Inference Bootcamp”


